metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Jin Yang, Jian-Fang Ma* and Jing-Fu Liu

Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China

Correspondence e-mail: jfma@public.cc.jl.cn

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(C-C) = 0.003 \text{ Å}$ R factor = 0.026 wR factor = 0.082 Data-to-parameter ratio = 14.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. An aquazinc(II) complex of 1,10-phenanthroline with fumarate counter-ions

In the title compound, diaquabis(1,10-phenanthroline- $\kappa^2 N, N'$)zinc(II) fumarate tetrahydrate, [Zn(phen)₂(H₂O)₂]*L*-4H₂O, where phen is 1,10-phenanthroline (C₁₂H₈N₂) and L^{2-} = fumarate (C₄H₂O₄), the zinc(II) cation is six-coordinated by two water molecules and four N atoms from two phen molecules. Each of the two independent L^{2-} anions is located about an inversion centre and does not coordinate to zinc(II) cations, acting rather as a counter-ion. The water molecules and L^{2-} anions are linked through a complicated hydrogen-bonding network to form a three-dimensional structure.

Comment

Interest in the synthesis and characterization of complexes with mixed ligands (Cariati *et al.*, 1983) arises from the advantage that their structural and chemical properties may be significantly varied depending on the choice of ligands (Robl, 1992). On the basis of reported X-ray structures, the anion derived from fumaric acid has been found to be a versatile ligand, and the coordination mode can be tailored by introducing different neutral ligands to the complex (Young *et al.*, 1998). In this paper, we present the preparation and crystal structure of an aquazinc complex of 1,10-phenanthroline containing fumarate as a non-coordinating species, (I).

The structure determination of (I) shows the coordination environment of the zinc(II) cation to be defined by two water molecules and four N atoms, derived from two phen molecules (Fig. 1 and Table 1). Charge balance is provided by two independent fumarate anions, each located about a centre of inversion. Finally, there are four non-coordinating water molecules in the asymmetric unit.

The presence of an uncoordinated carboxylate group for the L^{2-} anion is somewhat unexpected, because the carboxylate group is generally thought of as being a better coordinating group than water for zinc(II). In the related compound [Cu₂(C₄H₂O₄)(C₁₄H₃₃N₃)₂](ClO₄)₂ (Charpin *et al.*, 1987), the carboxylate O atoms coordinate to copper(II) to form a dimer. The average Zn-N distance of 2.1866 (16) Å is Received 22 April 2003 Accepted 1 May 2003 Online 16 May 2003

© 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

View of the extended asymmetric unit of (I), with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level (Sheldrick, 1990).

near to that of $[ZnL'_{1.5}(H_2O)_2](NO_3)_2 \cdot 2H_2O$, where L' is 1,1'-(1,4-butanediyl)bis(imidazole) (Ma *et al.*, 2000).

In (I), the L^{2-} anions and water molecules are linked through hydrogen bonds to form a complicated three-dimensional structure (Table 2). It is noted that there are 12 H atoms available for hydrogen bonding in the asymmetric unit and each of these participates in such interactions. The water molecules play a role as both acceptors and donors, while the carboxylate O atoms act only as acceptors.

Experimental

A mixture of fumaric acid (0.116 g, 1 mmol) and ZnO (0.081 g, 1 mmol) in water (10 ml) was stirred at room temperature. Then 1,10-phenanthroline (0.198 g, 1 mmol) was added to the solution. Colourless crystals of (I) were obtained after several days; yield: 68% (based on Zn). Analysis calculated for $C_{28}H_{30}N_4O_{10}Zn$: C 51.86, H 4.63, N 8.64%; found: C 51.79, H 4.44, N 8.77%.

Z = 2

 $D_x = 1.500 \text{ Mg m}^{-3}$

Cell parameters from 7123

Mo $K\alpha$ radiation

reflections

 $\theta = 1.5 - 27.5^{\circ}$ $\mu = 0.92 \text{ mm}^{-1}$

T = 293 (2) K

Block, colourless

 $0.50 \times 0.32 \times 0.10$ mm

Crystal data

$[Zn(C_{12}H_8N_2)_2(H_2O)_2]$ -
$(C_4H_2O_4)\cdot 4H_2O$
$M_r = 647.93$
Triclinic, $P\overline{1}$
a = 10.481 (2) Å
b = 10.597 (2) Å
c = 13.568 (3) Å
$\alpha = 97.12 \ (3)^{\circ}$
$\beta = 93.55 \ (3)^{\circ}$
$\gamma = 105.38 \ (3)^{\circ}$
$V = 1434.7 (6) \text{ Å}^3$

Data collection

Rigaku R-AXIS-RAPID	6500 independent reflections
diffractometer	5423 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.021$
Absorption correction: multi-scan	$\theta_{\rm max} = 27.5^{\circ}$
(ABSCOR; Higashi, 1995)	$h = -13 \rightarrow 13$
$T_{\min} = 0.767, \ T_{\max} = 0.912$	$k = -13 \rightarrow 13$
13836 measured reflections	$l = -17 \rightarrow 17$

Refinement

Refinement on F^2	H atoms treated by a mixture of
$R[F^2 > 2\sigma(F^2)] = 0.026$	independent and constrained
VR(F) = 0.082	rennement
S = 1.06	$w = 1/[\sigma^2(F_o^2) + (0.052P)^2]$
500 reflections	where $P = (F_o^2 + 2F_c^2)/3$
36 parameters	$(\Delta/\sigma)_{\rm max} = 0.001$
	$\Delta \rho_{\rm max} = 0.51 \ {\rm e} \ {\rm \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Zn-OW1	2.0742 (14)	Zn-N2	2.2323 (15)
Zn-OW2	2.0493 (13)	Zn-N3	2.2065 (15)
Zn-N1	2.1522 (16)	Zn-N4	2.1554 (17)
OW1–Zn–OW2	85.59 (6)	OW2-Zn-N4	91.16 (6)
OW1-Zn-N1	95.04 (6)	N1-Zn-N2	76.09 (6)
OW1-Zn-N2	166.71 (5)	N1-Zn-N3	89.43 (6)
OW1-Zn-N3	93.27 (6)	N1-Zn-N4	157.97 (6)
OW1-Zn-N4	102.31 (6)	N2-Zn-N3	96.48 (6)
OW2-Zn-N1	103.74 (6)	N2-Zn-N4	88.81 (6)
OW2-Zn-N2	86.94 (6)	N3-Zn-N4	76.23 (6)
OW2-Zn-N3	166.82 (5)		

Table 2Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
OW1−H11····OW3 ⁱ	0.92 (2)	1.79 (2)	2.702 (2)	174 (2)
OW3−H32···O2 ⁱⁱ	0.90 (2)	1.84 (2)	2.736 (2)	178 (2)
OW5−H51···OW6 ⁱⁱⁱ	0.88(2)	2.04 (2)	2.898 (2)	165 (2)
$OW4-H41\cdots O4^{iv}$	0.85 (3)	1.93 (3)	2.770 (2)	172 (3)
OW5−H52···O3 ^{iv}	0.84 (3)	1.99 (3)	2.817 (2)	170 (2)
$OW6-H61\cdotsO1^{v}$	0.89 (3)	1.92 (3)	2.796 (2)	169 (3)
OW1−H12···O2	0.87 (3)	1.87 (3)	2.7399 (19)	177 (3)
OW2−H22···O1	0.92(2)	1.78 (2)	2.6877 (18)	172 (2)
OW2−H21···O3	0.86(2)	1.76 (2)	2.6202 (19)	175 (2)
OW3−H31···OW4	0.85 (2)	1.90 (2)	2.739 (3)	166 (2)
OW4−H42···OW6	0.80 (3)	2.02 (3)	2.826 (3)	177 (3)
OW6−H62···OW5 ^{vi}	0.90 (3)	1.92 (3)	2.810 (2)	171 (3)

Symmetry codes: (i) 1 + x, y, z; (ii) 1 - x, 1 - y, 1 - z; (iii) 1 - x, 2 - y, 2 - z; (iv) x, 1 + y, z; (v) x - 1, 1 + y, z; (vi) x - 1, y, z.

All H atoms on C atoms were generated geometrically and refined in the riding-model approximation, with C–H = 0.93 Å and $U_{iso}(H)$ = $1.2U_{eq}(C)$. The H atoms of water molecules were located from difference Fourier map and were refined with restrained O–H distances of 0.90 (1) Å.

Data collection: *PROCESS-AUTO* (Rigaku, 1998); cell refinement: *PROCESS-AUTO*; data reduction: *PROCESS-AUTO*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *SHELXTL-Plus* (Sheldrick, 1990); software used to prepare material for publication: *SHELXTL-Plus*.

This work was supported by the Fok Ying Tung Education Foundation and the Ministry of Education of the People's Republic of China.

References

Cariati, F., Naldini, L., Panzanelli, A., Demartin, F. & Manassero, M. (1983). Inorg. Chim. Acta, 69, 117–122.

Charpin, P. P., Chevrier, G., Lanceet, M. & Vigner, D. (1987). Acta Cryst. C43, 216–218.

- Higashi, T. (1995). *ABSCOR*. Rigaku Corporation, Tokyo, Japan. Ma, J. F., Liu, J. F., Xing, Y., Jia, H. Q. & Lin, Y. H. (2000). *J. Chem. Soc. Dalton* Trans. pp. 2403-2407.
- Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Robl, C. (1992). Mater. Res. Bull. 27, 99-107.

Sheldrick, G. M. (1990). *SHELXTL-Plus*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Young, D. M., Geiser, U., Schultz, A. J. & Wang, H. H. (1998). J. Am. Chem. Soc. 120, 1331–1332.